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PROBLEMS AND RESULTS ON ADDITIVE PROPERTIES
OF GENERAL SEQUENCES, I11

P. ERDGS) A. SARKOZY! and V. T. SOS

To Professor L. Fejes Téth on his seventieth birthday

1. Let &={a;)ay. .} (a<a,<...) bean infinite sequence of positive inte-

gers, put
A(nj = 2 1,
ac o
a=nl
and for n=0/ 1, 2, . . ., let R(o/] n) or briefly R(n) denote the number of solu-
tions of

atay=n acd]aed.

In Part | of this paper [3], P. Erdds and A. Sirkdzy| proved that if F(n) is an
arithmetic function satisfying F(n) -+ H «; F(n+1)=F(n) for n=ny and F(n)=

= ﬂ(l H)_2 * then
o(n(log n)~? R(n) = F(n) = o ((F(m))"*)

cannot hold. In Part Il [4]] they showed that this theorem is nearly best possible.
(See[1]{[2] and [5] for further related results and problems.) In this paper, we con-
tinue the study of the regularity properties of the function R(n), In fact, here our
god is to show tha under cetan possbly smple assumptions on &, |R(nH1)—R(n)|
cannot be bounded.

If & is“very thin” (M(n)=o(]/?f))‘ then R(n) can be bounded and then also
|[R(n-H 1)—R(»)| is bounded. On the other hand, if g1 is “very dense” (e.g.
#={1]2,...,n) . . }) then clearly, |R(n+ 1)—R(n)| can be bounded again. One
may guess that if o/ is not “very thin” and not “very dense” then |R(n-H1)—R(n)|
cannot be bounded. This is not so as the following theorem shows:

THEOREM 1. Let §;<S,<... and f;<f,<... be positive integers satisfying

Sk i

5 =1 (fork=1,2,..).

6] Sp<h =
and put
+ oo
o ={am)ay..} = kul {Se» S+ 1 s 1]
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Then we have
IR(rH1)- R(m)| = 3

for alll n.

This theorem shows that if = consds of a “few” blocks of consecutive integers
then |R(n+L})~R(n)| can be bounded {independently of the counting function
t

A(n)). On the other hand, one may guess that if the number of these blocks up
to n, i.2.)
B(#,n) = ZJ 1
a—l(‘:f,aéA

is“large” (in terms of n), then |R(n+H 1) R(n)| cannot be bounded. In fact, we will
prove the following theorem:

THEOREM 2. If &8 then

| < . .
) SIN) & 2 (R(nﬁ 1)—Rm))* = o((B(s) n))Y)
cannot  hold.
The following corollaries are trivial consequences of Theorem 2.

CoralLARY 1. If &f#] then
® max | R(1+ 1) = R(m)| = 0 ((1? (4, N)/N"2)!12)
cannot hold.

In fact, Theorem 2 says that (3) is impossible in square mean.

OCROLLARY 2. If]

. B(#,N)
N—l-n-Pw N1z =+

then [R(n+1)— R(n)| cannot be bounded.

This is a consequence of Corollary 1.
Finally, we will show that Theorem 2 is nearly best possible:

TreoRem 3. For all g=0, there exists an infinite sequence &' such that
(1) B(st,n) > NV2—4
and

(i) R(n) is bounded (in fact, R(n)<3+¢~7 for large n) sa that also |R(n-H I)-
- R(n)] is bounded.

Furthermore, by using a construction of Erdgs| we can show that there exists
an infinite sequence & such that
y B(#, N
JJim sup= e = 0

and |R(n+1)—R(n)] is bounded.
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There is some gap between the lower bounds and upper bounds given above.
In fact, we conjecture that Corollary 2 can be sharpened in the following way:
If

v P TN
or
. B( N)
NL@ inf N7 :-d
(perhaps, it suffices to assume that
i inf 2SN 00N - )
Ner N]' -

then |R(n+H 1)—R(n)| cannot be bounded. Unfortunately, we have not been able
to prove this

2. In this section, we prove Theorem 1] o
For an arbitrary positive integer n) let us define the positive integer k by

) -1 < N2 =

(if n/2=1t,) then we put k=1)] Then (1) and (4) yield that

©) 2.1 <2(n2y=n

and

(6) Siid = 2(t+k) 21 2 [%H] = n+2|
Let m denote one of the numbers n, z+ 1. Then in view of (5) and (6)

7 a.+a,=m, a.cd,a,ed

implies that

®) fe-1 < max (&, ) < Syq

By the construction of the sequence &/ we have

©) AN{te—1] Seaf = {Sid SeH U oo 6}

By (8) and (9))

(10) Sy = max(a,] a,) =1

In view of (9) and (10)] (a,, a,) isasolution of (7) if and only if it satisfies one
and only one of the following equations:

(11 a+a,=m Sy =a,=1, 8=y, 6L,
(12) a,+a,=m, a,=1t_y, 8cC, Sy=a,=1t,

(13) a.+a,=m, Sy =a, =1, Sk"::ayé ti.
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Denoting the number of solutions of (11), (12) and (13) by R,(m), R,(m) and R,(m),
respectively, clealy we have
R (m) = Ry (m)

and

(14) R(M) = R, (m) + Ry (m)+ R{ (m) =2 Ry(m) + R(m).
If a.4a, isasolution of (11) or (13) with nin place of m, i.e,,

(15) aHa =n8 34 3, a 3 t_,, oA

or

(16) ata,=n Si=a,=h| S =a,=4,

then a,= a, + 1, a,5 a, is a solution of

(17 a,+a, = n+l) S| 3a, =24 a = h-y) qed|
orn
(18) a,+a,=n+l] Sisla ==, S§/3a 34,

respectively, except at most the solution a,= t,§ a,=n — 1, of (17) or (18). On the
other hand, in this way we get al the solutions of (17) and (18), except at most the
solution g,=S;] a,=n+1—S;] Thus we have

(19) R(m)—1= R@m+1) = R(m+1 fori= 1,3
(14) and (19) yield that
|R(r+1)— R(m)| = [2(Ry(n+1) = Ry () + (Ry(n+ 1) — Ry(n))] =
= 2|R(n+1)— Ri(m)|+|Rs(n+ 1) —Rs(m)| 2 2:1+1= 3
which completes the proof of Theorem 1.

3. Sections 3-6 will be devoted to the proof of Theorem 2. We start out
from the indirect assumption that &/ 0 is a sequence satisfying (2) in Theorem 2.
First we are going to show that there exist infinitely many integers N such that

B(, N+J) [N+j]” :
B(d’ N) - N f01'| J = ]I‘ 2, e d
In fact, if this inequality holds only for finitely many integers N, then there exists
an integer N, such that
B(A|N)J=1

(20)

and for N=N, there exists an integer N'= N'(N) satisfying N’ =N and
B(s,N') _ N']’
B(#,N) — '
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Then we get by induction that there exist integers Ny<N,<N,<...<N;<...
such that

2

(for j =1, 2,...)]

B(o, Njv1) [Nj+1]
B, N) - UN,

(In fact, N;,, can be defined by N;,,=N’(N)).) Hence

B(4, Npvy) _ BN _ A (Nia) _ (M)
B(<Z, Ny ‘jQ B(, N)) -,-Q[ ]“[ ]

X N,
so that d ’
N T 1
(21) B(sA, Nyiy) = (%:1'] B(d, Ny) = "'N_dg' Niy > Ny

for large enough k. On the other hand, clearly we have

22) B(A, Niyy) = 5%, 1= %, I = Npsy.
a-16iba T

(21) and (22) canot hold simultaneously] and this contradiction proves the existence

of infinitely many integers N satisfying (20).

4, Throughout the remaining part of the proof of Theorem 2, we use the fol-
lowing notation :

N denotes a large integer satisfying (20). We write e***=e(a)| and we put
r=e""| z=re(x) Where « is a red variable (so that a function of form p(z) is a
function of the real variable a: p(z)=p(re(2))< P(w)). We write

+ e
z%1
f& =2 =
(By r<1] this infinite series and al the other infinite series in the remaining part

of the proof are absolutely convergent.)
We start out from the integral

1
g= [17@0 -2)Pde

We will give lower and upper bounds for #. The lower bound for #] will be greater
than the upIEI)er bound, and this contradiction will prove that the indirect assumption
(2) cannot hold which will complete the proof of Theorem 2.

5. In this section, we give a lower bound for #] We write

f@(1-2)= ug b,z"
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Then for n — 1 4 o, nq o we have b,= 1, thus by the Parseval formula, we have
1 1 4o y +eo
I= [If@U-2Pda= [ |3 byzfdu= 3 bir* =
0 0 n=1 n=1

=¥ 3 bi=e? J 1=e*B(AN)

n=N n=N
n=1d o, n€of n—1¢ o, ncof

6. In this section, we give an upper bound for #. a‘y the Cauchy inequali
and the Parseval formula, and in view of (2) and (20) for dl & =0 and for N :-N.,(ati/

we have

(23)

1 1
g4 f lf(Z)(l—-Z)’ld4 = f If*(2)(1—2)||L -2 daJ =
1. 1
= [1f @0-2) (1| Hbdd=2 1/ @0-2) a'# =

=2 ﬂ |(§’1‘= 22 (1| —2)| dof = 2 fl(,z‘ R(m)2")(] —2)| dot =

da§| 2(f1 | g’:(R(n)— R(n— 1))z”iﬂda)”‘1 =

e 1/2
= 2(Z Ro)-R@=1F ) = 2(0-) 125 3 (Re)- R D)) .
@) =2(1-A) 3 S0~ D <2-r) 3]sm Y
((1| _a—z,fNj ( Zj S(ﬂ)r2"+ EN"_I_]S(H) rm.))l!a <1

ﬂz(%(ZS(N'H- _%'Hs(n) rﬁ»)] T‘ﬂ 3 (S(N) + N-1 +2 S(n) )2 <

n=N+1
+ e
< 3(e(B(#, N+ N~ 3 e(B(o, n))r)i<
n=N=1

.qsﬂ“’ BNy +eN 5 | (5| ) (5 ) N -

n=N+

— 381]23(&41 N)(ll +N q Z‘T 4 2!! 1/2

snce we have

x*

l—e " =x— 2' '?;-—...*:x for 0 =x<1|
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For 0=x<1 we have

e (n+4 ] =
l-x)"*=1+ [ )x“ — > nix"
(=) ZUe )Xz m>

n=1

thus we obtain from (24) that for large N,

f < 331,'23(&{’ N)(]l +N~5vé’j‘un4rmt)l.’ﬁ <1

+ e
< 362 B(A, N)(1+N-5 3 n*r"1* <
n=1

(25 < 3B N)(| HN-°- 24(14 )5 =
= 32 B(of, N)(] +24N-°1] —e~*%)~%)"4 <

—-5\1/2
< 3¢ B(d, ) [1+24N‘5(%] ] 41581“3(% N)

snce we have

x2 X _rﬂ_[ ﬂ] X
_f"‘ﬁ_“""x—’j‘g‘_’q 1_2 :.Efor 0<x=<1]

7. In this section, we complete the proof of Theorem 2. By (23) and (25), for
dl e and N=N,(e) we have

e B(4| N) = ¢ < 1562 B(| N)
e=2B(o4) N) < 1582 B(s#) N)

l—e*=x

hence

|
— < &%
E
But for sufficiently small g (e.g., for ¢=3110-%)/ this inequality cannot hold. Thus
in fact, the indirect assumption (2) leads to a contradiction which completes the
proof of Theorem 2.

8. Sections 8, 9 and 10 will be devoted to the proof of Theorem 3. The proof
is based on the probabilistic method of Erdds and Rényi [1], [2]] The Halberstam—
Roth book [5] contains an excellent exposition of this method thus we use the ter-
minology and notation of this book. In this section, we give a survey of those nota-
tions, facts and results connected with this probabiligic method which will be needed
in the proof of Theorem 3.

Let Q denote the set of the gtrictly increasing sequences of positive integers.

LEmmA 1. Let

(26) 0y, Oy, Ugyf e
be reall numbers satisfying

27) O=0a,=1 h=12..)
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Then there exists a probability space (Q] S| u) with the following two properties:
(i) For every natural number n, the event E™= {&/{ #d Q) nd &} is meas-

urable,and p(E™) =.,a
(i) The events E(”J E®] . . are independent,

Thisis Theorem 13 in [5], py 142.
We denote by p(s#] n) the characteristic function of the event E™{

1 i f ned
9(“‘""]:{]0 i ngos
s0 that

A(n) = le o (4, j).

Furthermore, we denote the number of solutions of

(28) a.+a,=n, afd| acd) a] < ay
by r(n)=r(#) n) so that
(29) |R(Z, n) =2r(f]n)]| = 1

(where R(, n) is the number of solutions of (28) without the restriction a,<a,)!
Lemma 2. If the sequence (26) satisfies (27) and
oy =aj=¢ for j = ji
where ) ¢ are constants such that O<=a, O=<c< 1, then, with probability 1, we have

A(n) ~ -l—f-c- -,

This lemmais a consequence of Lemmas 10 and 11 in [5]] pp. 144-145.
The crucial point of the proof is the use of the following result of Erdds and

Rényi [2]:
Lemma 3. If] & =0 and the sequence (26) is defined by

(30) a,1=-;—j‘*+=>“-4 for j41,2....
then, with probability 1,
R(,n)(=2r(,m)+1) <41+ D)+] for n>nle )l

See Theorem 2 and its proof in [3]] gr) 111 and 151-152; see aso (29).
We shdl need dso the Bord-Cantelli lemma:

LemmA 4. Let (X, S u) be a probability space and let F;] F;) ... be a sequence
of measurable events. If

+rca
2 ;u(F,# <+
i=1

then, with probability 1) at most a finite number of the events F| can occur.
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See [5]) p: 135
9. For &4 2] we write
T,n= 3 1

a=n

ha a—1€of,acof
so that

31) B, m+T(,my= 3 1+ 3 1= 31=A@).
u—lia.i::ned n——lgifaed a“EE.;

Lemma 5. If] the sequence (26) satisfies (27) and

+ o
(32 ZI' o;j4q <+ ooy
J:

then, with probability 1,
T(|n) <4 log n for n = n,(L)
(where ny may depend on both the sequence (26) and /)|

proor. We have to give an upper bound for u({#] T(#] m)=4 log n}).
We write

A, =2log n.
Then
T,n= 2 1= g;e(d,j—l)g(-n’,j) = 22,
¢_1g§:'aed "

implies that either

T & 3] o(of, 2i4 Dot 2) = 1,
or
To(L.m) &L 3 o(at, 2)o(ot,2i+1) = A,
holds so that =
p({1 T (o, n) = 22,}) =
S u({ L) n) = L))+ (A T 1) 21 1)) =

(33) = dél, p({: T, ) = d})‘f'dg ﬂ({a‘ﬁ T (s, n) = d}) =

= Z H,,(d)-l— ?.’,,(d}
d=Jy, d=1
where

U() = plef: Tt ) = &) = uff] |3 (] 2= Do(os, 20) = o) =

d
= 2 i Ooi,—1%ai, (1 — Ogiy-1 szi,)‘l IT (1—ogq03)
1sij=...=iy=nf2 j=1 1=i=nf2
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and similarly,
V'(d) = p({#1 Tl n) = d}) = p({] 15_21!549(&!8’, 2i)o(#|2iH1) = d}) =

=t=h,

d

- 1=_c:1¢...2-]:,{a;s J=1 %if %EJH(” N agi"%‘“)_llmfgn,ra(u ~ i)
so that for any real number x;
(34 Uu(x) & mé;jz u(d) x* = 1§é1;94 ((1 = oty ) + gy x]
and
() ACRS 2 ) = (1 —oi%r0) + 02010 %)

By (32)) (33)] (34) and (35)] we have
p({ef: T (o, ) = 24,)) = "2)1 u,.(d)+dg va(d) =

= D ud)et=* I v(d)e* = e J u(d)el + 3 v,(d)ef) =
d=i, d=4, d=i, dz i,

seh( 3 u“(d)ed+o dzfzvn(d)ed) = e MU (e) +Vi(e) =

O0=d=nl2 =n

= n-2( H (1+a21—1a25(e" I))+ H 2(1 +a21052i+1(€— 1))) =

1=i=nf2 1=i=n/

=n"% JI (1+a;04(e—1))<n? JZ.. exp(2%54a(e—1)) =

1=j=<=n
+ o=
= n%exp((e— 1) 3 w%sr)< ntexp(d %‘%‘Hj“ cn*
1=j=<n i=1
(where ¢ depends on the sequence (26)) since

1+x<eq for x=0.
Thus we have

+oo +oo
2 u({A:T(L,n) =4logn}) < 5 cn® <+
n=1

n=1

so that by the Borel—Cantelli lemma (Lemma 4), with probability 1, a most a
finite number of the events T'(&/) n)=4 log n (n=1, 2] . ..) can occur which com-
pletes the proof of the lemma.

10. In this section, we complete the proof of Theorem 3.
Let us define the sequence (26) by

36) P
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Then by Lemma 3 [with %' in place of a], with probability 1, R(«, n) is
bounded. (In fact, for large n we have

R(s,n) < 4|H1 4[%62—8]—1] +1= 3+&1)

Furthermore, by Lemma 2, with probability 1, we have

1(1 =2
4@ ~ 5 (3¢ nom-s

so that, with probability 1,
(37) A(n) = %mﬂm—q — pl1/2)—e

for n large enough.
By Lemma 5 {note that, clearly, the sequence (36) satisfies (32)), with prob-
ability 1, '

(38) T(An)<4logn

for n large enough.
In view of (31)/ (37) and (38) yield that, with probability 1,

B(of| 1) = A(T) = T(af{ ) > =5 — 410G 1>« o HOD=+ for 1 > my(elat)

Thus, with probability 1, both (i) and (ii) in Theorem 3 hold, so that there
exists infinitely many sequences satisfying both (i) and (ii), which completes the
proof of Theorem 3.
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