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PROBLEMS AND RESULTS ON ADDITIVE PROPERTIES
OF GENERAL SEQUENCES, III

P. ERDOS,  A. SARKtiZY and V. T. SbS

To Professor L. Fejes T&h  on his seventieth birthday

1. Let d={al, a2,  . ..} (ul-=asc: . . .) be an infinite sequence of positive inte-
gers, put

A(n)  = .Fd 1,
osn

and for n=O,  1, 2, . . . , let R(&,  n) or briefly R(n) denote the number of solu-
tions of

u,+ay  = n, a&d,  a&d.

In Part I of this paper [3],  P. Erd& and A. Sarkijzy  proved that if F(n) is an
arithmetic function satisfying F(n) -t + 03,
=o(n(log  n)-2),  then

F(n+l)zF(n)  for nzn,  and F(n)=

R(n) - F(n) = 0 ((F(n))“a)

cannot hold. In Part II [4],  they showed that this theorem is nearly best possible.
(See [l],  [2]  and [S]  for further related results and problems.) In this paper, we con-
tinue the study of the regularity properties of the function R(n), In fact, here our
goal is to show that under certain possibly simple assumptions on d, ]R(n+ 1)-J?(n)]
cannot be bounded.

If d is “very thin” (&Z(rz)=o~&))  then R(n) can be bounded and then also
]R(n.l-  1)-R(n)]  is bounded. On the other hand, if d is “very dense” (e.g.
&={l, 2, ..‘, n, . . ,})  then clearly, IR(n+ 1)--R(n)]  can be bounded again. One
may guess that if d is not “very thin” and not “very dense” then ]R(n+ 1)-R(n)]
cannot be bounded. This is not so as the following theorem shows:

THEOREM 1. Let S,-=&-=...  and tl-=r2-=... be positive integers satisfying

(1)

and put

Sk+ls,-=t,s----
2 l

(for k = 1, 2, . ..).

d = {Ql,  a,, ..J = kQ{sk,sk+‘,  ‘,.I  tJ.
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Then we have

for all  n.
p?(n+  l)- R(n)l  5 3

This theorem shows that if d consists of a “few” blocks of consecutive integers
then IR(n+  I)-R(n)1 can be bounded {independently of the counting function
A(n)). On the other hand, one may guess that if the number of these blocks up
to n, is.,

w&n.)  = ag 1
fi-l~d.UEA

is “large” (in terms of n), then IR(n+  l)- R(n)]  cannot be bounded. In fact, we will
prove the following theorem:

THEOREM 2. If d#0  then

(2)

cannot hold.

S(N) 25 nt(R(n+  l)-R(n))2  = o((B(d, n)Y)

The following corollaries are trivial consequences of Theorem 2.

COROLLARY 1. If s&0,  then

(3) ~2;  1 R(n + 1) - R(n)]  = 0 ((i? (&, N)/N1’2)1/2)
cannot hold.

In fact, Theorem 2 says that (3) is impossible in square mean.

COROLLARY 2. If

then [R(n+l)-R(n)1  cannot be bounded.

This is a consequence of Corollary 1.
Finally, we will show that Theorem 2 is nearly best possible:

THEOREM 3. For all ~9, there exists an injinite  sequence d such that

(0 B(d, n) >> N1J2--E

and

(ii) R(n) is bounded (in fact, R(n)<3+fm1  for large n) so that also IR(n-l-  l)-
- R(n)]  is bounded.

Furthermore, by using a construction of Erd&, we can show that there exists
an infinite sequence Sg  such that

and jR(n+l)-R(n)!  is bounded.
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There is some gap between the lower bounds and upper bounds given above.
In fact, we conjecture that Corollary 2 can be sharpened in the following way:

If

lim s~p~'~'  N, = + 03
N++=- N'/a

or

Nlim  inf B(d W>O
+ m N1,2

(perhaps, it suffices to assume that

Nlim  inf B(a’, N) log N
N1/2 = Jr-),-. co

then IR(n+ 1)-R@)]  cannot be bounded. Unfortunately, we have not been able
to prove this.

2. In this section, we prove Theorem 1.
For an arbitrary positive integer M,  let us define the positive integer k by

(4) tk-l  < n/2 ~5 tk

(if n/2Stl, then we put k=l).  Then (1) and (4) yield that

(5) Zfk-1 -=z  2(n/2)  = n

and

(6) Sk,,  z Z(t,+k)  s 2 [;+l) = n+2.

Let m denote one of the numbers n, rz+  1. Then in view of (5) and (6)

(7)
implies that

a,+a,  = m, axEd,  u&d

(8) fk-1  < max(%,  $1  < Sk+,.

By the construction of the sequence d, we have

(9)

BY (8) and (9),

dn{tk-I,  Sk,,}  = (Sk,  Sk+  1,  a*‘, tk}.

(1Q Sk  s max(a,,  a,,) s tke

In view of (9) and (lo), (a,, a,) is a solution of (7) if and only if it satisfies one
and only one of the following equations:

(11)

(12)

(13)
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Denoting the number of solutions of (ll), (12) and (13) by R,(m), Rz(m)  and R,(m),
respectively, clearly we have

R2 W = & 04
and

(14) R(m) = R1  (m) + R2  (m)  + R3  (m) = 2 RI(m)  f R,(m).

If a,, a,, is a solution of (11) or (13) with n in place of m, i.e.,

(15)

or

(16)

ax+  a, = n, Sk  5 ax  5 tk, a,,  s tkm19  a&d

a,+a,=n,  sksaxstkg  sksaystk,

then a,= a, + 1, Q,=  a, is a solution of

(17) a,+a,  = n+l, Sk  5 a ,  5 tk, a ,  s tk-1, a&d,

or

IW au-t-a,  = nfl, Sk  5 a, s tk, Sk 5 a, 5 tk,

respectively, except at most the solution a,= tk, a,,=n  - tk of (17) or (18). On the
other hand, in this way we get all the solutions of (17) and (18),  except at most the
solution a,==&,  a,=n+l-S,. Thus we have

(19) Ri(n)-1 z Ri(n+l)  5 R,(n)+1 for i = 1, 3.

(14) and (19) yield that

IR(n+l)-R(n)\  = 12(R,(n+l)-R1(n))+(R,(n+l)-R,(n))\  i=

s 2lR,(n+l)-R,(n)[+jR,(n+l)-R&z)1  s 2hl+l  = 3

which completes the proof of Theorem 1.

3. Sections 3-6 will be devoted to the proof of Theorem 2. We start out
from the indirect assumption that df 0 is a sequence satisfying (2) in Theorem 2.

First we are going to show that there exist infinitely many integers N such that

2 for  j = 1 , 2 , .‘I.

In fact, if this inequality holds only for Etely many integers N, then there exists
an integer NO  such that

B(csd, No)  t 1

and for NsN,-,  there exists an integer N’= N’(N) satisfying N’ PN  and
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Then we get by induction that there exist integers
such that

N,,-=N,<  N,c  . . . -Z  N,c  .“.

’ (for j = 1, 2, .‘.).

(In fact, Nj+1 GUI  be defined by Nj+,=N’(Nj)*) Hence

for large enough k. On the other hand, clearly we have

(22)

(21) and (22) cannot hold simu!taneously  and this contradiction proves the existence
of infinitely many integers N satisfying (20).

4. Throughout the remaining part of the proof of Theorem 2, we use the foI-
lowing notation :

N denotes a large integer satisfying (20). We write c?~~=~(cx),  and we put
T=.c*‘~,  z=re(bt) where M is a real variable (so that a function of form p(z) is a
function of the real variable CI  : p(z)=p(re(a))=  P(U)).  We write

f(z) = 5 Z’J.
j=l

(By r-1, this infinite series and all the other infinite series in the remaining part
of the proof are absolutely convergent.)

We start out from the integral

$-= j,f(z)(l -z),2dcL
0

We will give lower and upper bounds for fl. The lower bound for $ will be greater
than the upper bound, and this contradiction will prove that the indirect assumption
(2) cannot hold which will complete the proof of Theorem 2.

5. In this section, we give a lower bound for I.  We write
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Then for n - 1 $ d, nE  d we have b,,=  1, thus by the Parseval formula, we have

(23)

6. In this section, we give an upper bound for p.  By the Cauchy  inequality
and the Parseval formula, and in view of (2) and (20),  for all E =-0  and for N>N,,(e)
we have

$= jlf(z)(l-z)“,da  = i,f2(z)(l-z),,l-z,da  2%
0 0

5 ~,fyz)(l-z),(l +lzl)da s 2 jif”(z)(l-z),da =
0 0

= 2 f j(jk;  z%i)z(l  -z)( & = 2 s’@; R(n).z”)(l  -z)/  dcr =
0 0

=Z$‘I~~(R(~~-R(~-~))Z~[~~~  2(j@R(n)-R(n-l))z”(*d~x)~‘~  =

= 2(~~~(R(n)-R(n-1))2r231/2  = 2((1-r2)&fi~~(R(n)-R(n-  l))2r2n)1’z=

(241 = 2 ((1 - r2)  nir S(n - 1) rzn)l/’  c; 2{(1 - r2)mkI  S(n) ran)l/a  =

= 2((1  -e -2/N)  (*i S(n)r2”+~=~~lS(rr)r2~)~/2  e

K 2($&ww=~~l S(n) ;dn))lia ‘f 3 (S(N) + N-l n=$~lS(nl  r’“)l” -rc

-=z 3
t

& (B(d,  N))a +&N-1 &$T1  (Wd, N) (+)‘)z r2n]“z  =

= 3PB(Jxz,  N)(l  +w5 5 n%““)Y2
/f&V+1

since we have

l-ee-X=x-Z+X9-...<x
21 3!

f o r  O-=x-=1.
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For O-=:x-=1  we have

59

thus we obtain from (24) that for large A?

$8 < 3&l/aB(&Y,  N)(l  +N-5  5 p1V)1’2  4
n=Ni-1

(25) < 3#B(d,  N)(l  + W5.  24(1-  ~‘)-~)1”  =

= 3$PB(&,  N)(l  +24W61  -~-“~)-~)4~  (

<3e”a~(~,N)(1+24N-5(~~5)liz=  ~~.@B(J&N)

since we have
x2 x3 X2 x

l-e-X=x-T+3!-...=-x-~=x  1-z  =-y
t 1

x f o r  O<x<l.

7. In this section, we complete the proof of Theorem 2. By (23) and (25),  for
all E and N=-&(E)  we have

e-z3(d,  iv) s $-z 15&1’219(9p;  N)
hence

em23(d,  N) -c 15a1/2B(&,  N)

1- < &=I=.
15ea

But for sufficiently small E (e.g., for ~=3.  10-5),  this inequality cannot hold. Thus
in fact, the indirect assumption (2) leads to a contradiction which completes the
proof of Theorem 2.

8. Sections 8, 9 and 10 will be devoted to the proof of Theorem 3. The proof
is based on the probabilistic method of Erdiis and R6nyi  [I], 121.  The Halberstam-
Roth book [5]  contains an excellent exposition of this method thus we use the ter-
minology and notation of this book. In this section, we give a survey of those nota-
tions, facts and results connected with this probabilistic method which will be needed
in the proof of Theorem 3.

Let s1  denote the set of the strictly increasing sequences of positive integers.

LEMMA 1. Let

(26) cl,,  %, aa,  V”

be real  numbers satisfying

(27) OSct”-sl (n = 1, 2, . ..).
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Then there exists a probability space ($2,  S, p) with the following two properties:
(i) For every natural number n, the event Et”)=  {&:  de B,  nE  ,&}  is meas-

urable and p(E’“‘)  = a
(i) The events Efij, E@),  . . . are independent,

This is Theorem 13 in [5],  p. 142.
We denote by Q(G?,  n) the characteristic function of the event I?(“):

I 1
e(4  4 =

i f  nE&

0 i f  n$xZ
so that

Furthermore, we denote the number of solutions of

(28) a,+a,  = n, a,C4 ayE&,  a, -r=  up
by r(n)=r(&,  n) so that

(29 IR(sd,  n)  -2r(d, n)l  5 1

(where R(.sz?,  n) is the number of solutions of (28) without the restriction aXcaY).

LEMMA 2. If the sequence (26) satisfies (27) and

aj = aj-" for j 2 j,

where a, c are constants such that O-=a,  O-zc-= 1, then, with probability 1, we have

A(n)  - & n1-c.

This lemma is a consequence of Lemmas 10 and 11 in [5],  pp. 144-145.
The crucial point of the proof is the use of the following result of Erd6s  and

R&ryi  [2]  :

LEMMA 3. Zf E s-0 and the sequence (26) is defined by

aj = _tjc2++1-1
2

for j= 1,2,  . . . .

then, with probability 1,

R(d,n)(~2r(&,n)+1)i4(l+s-1)+1  f o r  n=-q(c,d).

See Theorem 2 and its proof in [.5],  pp. 111 and 151-152; see also (29).
We shall need also the Borel-Cantelli lemma:

LEMMA 4. Let (X, S, p) be a probability space and let F,, F,, . . . be a sequence
of measurable events. If

j~ka -c+-y

then, with probability 1, at most a finite number of the events Fj can occur.
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See [5],  p. 135.

9. For dE 52,  we write

LEMMA 5. If the sequence (26) satisfies (27) and

Cm
(32) .2 UjEj+l  d + O”2

j = l
then, with probability 1,

T(d,  n) < 4 log n for n > n,(d)

(where n, may depend on both the sequence (26) and ~9).

PROOF. We have to give an upper bound for fi((.& T(J&  $5~4 log n}).
We write

A, = 2 log n.
Then

implies that either

Tl(d,  n) 52 2 e(d,  2i-  l)&stZ,  2i) z I,
l~;iE3l/Z

or

holds so that

~((-01:  T(d,  n) z- U,})  s

s p({d:  G(d, n) 2 &})+p({d:  G(d,  n) 5 An})  =

(33) = dl$
n
P&-J: GW,  n>  = 4)+d~e~(I~:  ~&f’, n>  = 4)  =

= ,g W)fd~ ~(4
where

n ”

u,(d) = p({&:  T,(d,  n) = d}) = ~({ssf: 2 e(sf,  2i-  l)e(5$,  2i) = d}) =
lSisn/2
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and similarly,

V”(d) = p({d: T,(d,  n) = d}) = p({d: 2
lS;i-=R]Z

@(&, 2i)Q(d,  2i-k  1) = d}) =

= 2 $ O[Zij  a2ij+l(1 -Gi,%i,+~>-’ 17 (1 -a2ia2i+l)
15i,e...-ci,-zn/Z  j=l l~i-42

so that for any real number X,

(34)

and

2
lziCn/P

((1-@2i-ra2i)+%i-l@2iX)

(35) Y,(x)  !fZ  2 %(d)Xd  = n ((1  -a2ia2i+l)+azja2i,lX).
OSdcn/2 1si-42

By (32),  (33),  (34) and (35),  we have

= nS2exp((e-  1) 2 CtjCtj+l) < nW2exp(2  sajaj+l)  i en-’
lLj-e:n j=l

(where c depends on the sequence (26)) since

Thus we have
l+x-=e*  f o r  x=-O.

so that by the Borel-Cantelli  lemma (Lemma 4),  with probability 1, at most a
finite number of the events T(d,  n)z4  log n (PI=  1,2, . ,.)  can occur which com-
pletes the proof of the lemma.

10. In this section, we complete the proof of Theorem 3.
Let us deIine  the sequence (26) by

(36)
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Then by Lemma 3 -& in place of & ) with probability 1, R(d,  n) is

bounded. (In fact, for large n we have

R(d,n)-=4  l+[ (&)3+1=  3+s-1.)

Furthermore, by Lemma 2, with probability 1, we have

so that, with probability 1,

(37)
for n large enough.

A(n)=-; 2&+e  = #/2)--E

By Lemma 5 {note that, clearly, the sequence (36) satisfies (32)),  with prob-
ability 1,

(38) T&d,  n) == 4 log tl

for n large enough.
In view of (31),  (37) and (38) yield that, with probability 1,

B(d, n)  = A(n) - T(d,  n) > rP)--8  - 4 log Iz > 3 #‘2)--8 for pt =z &(E,  d).

Thus, with probability 1, both (i) and (ii) in Theorem 3 hold, so that there
exists infinitely many sequences satisfying both (i) and (ii), which completes the
proof of Theorem 3.
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