FOURNAL OF NUMBIR THEORY 28, 163168 (1988)

On Nilpotent but Not Abelian Groups
and Abelian but Not Cyclic Groups

Paur Erpis

Muathematieal Instioute, Hunearion dcoademy of Sciences,
Audapest H-[ 364, Hungary

AMD

MicHarL E. Mays

Deparsment of Mathematics, West Fieginin University,
Muorgansown, Wit Vieginis 26506

Reccived Junc. 19, 1987

We derive asymptotc formulas [or A{n)—Clr)=|{m < cvery group of order
m % abelian but not every group of order m s cyclic}|, Nin)—dAr)=|{m<n
every group of order m is mipotent but oot every group of order o is abelian ||, and
related counting functions from group theory. 45 1988 Academie Press, lac

There is only one group of erder p, p 4 prime, up to isomorphism, This is
eguivalent to saying that every group of prime order is cyclic. A necessary
and sufficient condition that there be only one group of order n is that
(n, ¢in))=1, where ¢(n) is the totient function of Euler. (i, ¢{n))=1 il nis
squarefree and no two prime factors poand ¢ of o have p=1 (mod g).

Erdds [ 1] found an asymptotic formula for the counting function

Cin)=|{m < n there is only one group of order m}|
= |{m < n: every group of order m is cyclic}|
=[{m<n (m plm)) =1},

given by

He !

C{n}={|+u{l}}m.

(1)
where v 15 Euler’s constant.
Pazderski [B] studied the [unction y{n) defined by extending mul-
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tiplicatively the recursion for prime powers W(p')=(p* = 10{p* "),
wil)=1. He gave several theorems of the form

Every group of order # has property P if and only if » has property
P' and (n) has property P*.

For example, since tiin)=¢{n) ill n is squarelree, we have that every
group of order n is cyelic il (nr(n))=1 and » is squarefree. Two
analogous results from [8] are that every group of order n is abelian iff
(n i)} =1 and n is cubefree, and every group of order » is nilpotent iff
(r, ()= 1.

Mays [4] used these resulis to find asymptotic formulas for A(n)=
|{m=n: every group of order m is abelian}| and N(n)=|{m=<n: every
group of order m is nilpotent ||, It happens that the “same” formula

(14 0(1)) —e—
log log log

is an appropriate measure of the rate of growth for all three counting

functions C(n), A(n), and Ni{n). This turns out to be a special case of a

result of Scourfield [11], who established that an asymptotic formula

similar to this is valid if any function which is “polynomial like™ is used in

place of y(n).

On the other hand, C{n)< A{n)< Nin) from first principles, so it is
reasonable to expect that some finer information has gotten lost in the o(1)
term, This paper estimates the differences 4{n) — C(n) and N{n)— A(n),

Throughout we will use some standard estimates for functions of prime
numbers, It will be convenient to use a generic constant ¢ in our series of
estimates rather than to keep track of new constants introduced in every
step. In all cases the constant ¢ 15 independent of .

If p and ¢ are primes, it follows from Remark 1 in [9] that

3 Lip=(log log n)/{g— 1)+ Ollog g/q).

P
p=1 {modg}
In particular, if ¢ < (logn)™'!, then
Y Up=(1+ell))loglogn)/(g—1). (2)
p-ﬂfl'{mr::ldql

We will also need the following well-known lemma from sieve theory:
Let g, <g,< -++ <x be a sequence of primes such that ¥ .., .. 1/g,—0
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for every & =0, Then the number of integers n < x for which # 2 0 (mod ¢}
is

(1+e(1))= [] (1=1/g,). i3)

i< X

Mote that the hypothesis is satisfied for the primes r=1 (mod p), il p— .
Two useful sums over primes are

Y 1pt=(1+o0(1)) 1/(zlog 1), (4)
T

and
Y Upt=(+o(1)) 1) log1). (3}
s

These follows from the prime number theorem using summation by parts
or a formula relating the density of primes in the neighborhood of y to
1/log y.

A useful bound for a special product of the form (3) is

[] (0=1Up)=(1+all))e "logn. (6)

LR

To sieve by primes in an arithmetic progression we can use (2) o write:

[T (1=1/p)=1(1+ O(log g/g))/(log n)'"*~ . (7
=] j_mnd.ul :

A good reference for sieving argument results is Halberstam and Richert
[3]. and for the other estimates involving prime numbers Prachar [10],
Estermann [27], or Norton [7].

TueoreM 1. There exists a constant ¢ such that

o
log log n(log log log n)*”

Aln)—Cin)=(1+0(1)}

Proof. The most general m <n counted by 4(n)— C(n) has the prime
factorization pipi---p;q14:+--q,, where no p, 8 a g, rzl,
< Pas o, gr<gs=< -+ =<y, and no unitary congruences p,= +1
{mod p)), p,= 41 (mod q,), ¢,= | (mod p,), or g¢,=1 (mod g,) hold among
the prime divisors of m.
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However, we may without loss of generality assume that the form of m
is more restricted. Suppose first that m has a prime [lactor
p<loglog n/(log log log n). Then all other prime factors g of m must
satisfy ¢ 2 | (mod p), and so of the numbers less than n at most
1T 1 w1 mod gy, e = (1 — 1/r) are eligible. But by (7) this product is no bigger
than

(1+ O(log pjp))/(log n)''# 1< ga e lonnr,

which is small enough te be ignored as n becomes large. Thus we may
assume that all prime factors or m are bigger than log log n/{log log log n)?,
Furthermore, if there are iwo or more prime [actors occurring in the
square-full part of m, say p, and p,. then the total number of multiples of
m eligible is no more than n/( pf p3). and the set of all such numbers is no
larger than

n ), Upipisa ) Vpl X el
12 P 2
where the sum over p, is for p, > (log log n)/(log log log n)* and the sum
over p, 1§ p, > p.> (loglog n)/(log log log n)*. By (4) this is of smaller
order of magnitude than the bound claimed in the theorem. Thus m has a
unigue squared prime factor p. Also inconsequential by (4) are square
prime factors larger than (log log n){log log log n)* because there are not
enough multiples of such numbérs less than n,

Now [ix p and consider how many eligible i < n are counted with square
factor p*. Write t=n/p”. By (1), of the ¢ multiples up® of p* less than a,
(1 +oll))e “tlogloglogn have (u, du))=1 and hence have no unitary
congruences among the g,. To ensure that ¢, 2 | (mod p) we rule these
primes out with the sieving factor

I1 (1 =1/ry=(1 + Xlog p/p))/(log m)"t7 1",

r= 1 imod gy
F=cn

MNow we sum over p and use the lemma to get

(1 +o(l)) e "milogloglogn} 1/p*(logm)' e 1,
P
where: the summation extends over all primes p between (log log r)/
{log log log n)* and (log log n)(log log log n)*. The proof is complete upon
noting that by a partial summation formula similar to (4) the summation is

(1 +al(l)) c/(log log n log log log i),
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TueoreM 2 There exists a constant ¢ such that

“n

{log log n)(log log log n)*

Mu)—Am)=114+ell))

Proof. We use the same techmique here as was used in the prool of
Theorem 1. We need to estimate

| {er=p: mn is not square-free and (m, fr(m))=1}[.

The most general such m have prime factors with arhitrary exponents, with
at least one prime factor oecurring to at least the third power. However, we
can successively restrict mr to guarantee

(1} all prime factors of m are = log log n/(log log log n)’,
{ii} no prime factor occurs to a power higher than the third,
{iii} exactly one prime factor p occurs with exponent three,
{iv) p<(loglogn)loglog log n)’, and
{v] mjp’is square-free.

This is done by noting in cach case that the asymptotic size of the set of
m<n discarded as failing to meet the condition is smaller than the
asymptotic value clavmed for Mr) — A(n) in the theorem.

MNow fix the prime p occurring with exponent three and write t=n/p’.
There are + multiples up” of p* less than n, and the relevant multiples for
our theorem satisfy (u, ¢lu))=1 and ¢ = 1 (mod p) for any glw. When
factors for these conditions are included and we sum over p. the expression
to evaluate is the same as in Theorem 1 except for a factor of p* replacing
p”'in the denominator.

With Carl Pomerance, we observe that several other results of [8] can
be used to establish asymptotic limits for counting functions associated
with finite groups. In particular, the method of this paper applied to the
characterization of supersolvable groups in Pazderski's Satz 3 gives that
there exists a constant ¢ with | >¢> 6/n" such that

Uln)=||m < n: every group of order m is supersolvable } |

=[14e{l})) én.

Murty and Murty [6] use a result of Hughes to draw the same
conclusion about the existence of a “constant of supersolvability,”

Satz 4 and Satz 5 of [8] similarly can be used to establish the existence
of constants ¢, 1 = ¢ >6/n, for groups with cyclic commutator subgroups
and metacyelic groups, The characterization of integers n for which every
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group of order n is p-nilpotent implies the existence of a constant ¢ greater
than (p— 1}/p but less than 1 for which

N, (n)=|{m<n; every group of order m is p-nilpotent ||

satisfies

,ﬁ.l'P{u; ={1+o(l)) e

This statement of the p-nilpotence density resull corrects a resull of Mays
[5], the error of which was pointed out by Pomerance. In all of these
cases, the technigue is to start with a set of integers of positive density for
which the number theoretic condition is vacuously satisfied (square-free
numbers for Uin) and the two generalized commutativity conditions, and
numbers not divisible by p for p-nilpotent groups), and augment that set
with sets buill by sieving to ensure thal forbidden congruences among the
prime factors of the remaining number do not occur,

10,
11.
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