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Let A be a set of nonnegative integers such that d,(A) = w > 0. Let k be the least 
integer satisfying k > 11~. It is proved that there is an infinite arithmetic progression 
with difference at most k + 1 such that every term of the progression can be written 
as a sum of exactly k2 - k distinct terms of A, and there is an infinite arithmetic 
progression with difference at most k2- k such that every term of the progression 
can be written as a sum of exactly k + 1 distinct terms of A. A solution is also 
obtained to the infinite analog of a problem of Erdiis and Freud on powers of 2 and 
on square-free numbers that can be represented as bounded sums of distinct 
elements chosen from a set A with positive density. ,c’ 1988 Academic Press, Inc. 

1, INrRoDucT10~ 

If a set A of nonnegative integers has positive upper asymptotic density, 
then A contains arbitrarily long finite arithmetic progressions 
(Szemerkdi [3]). It is not true, however, that a set of positive upper 
asymptotic density must contain an infinite arithmetic progression. In fact, 
it is easy to construct a set of positive lower asymptotic density that does 
not contain an infinite arithmetic progression. For example, if 0 < uj < 1 
and if x is real and irrational, let A consist of all nonnegative integers a 
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such that 0 < (ax} < w, where {ax) denotes the fractional part of ax. Then 
A has density w, but contains no infinite arithmetic progression. Indeed, if 
hw < 1, then the h-fold sumset hA contains no infinite arithmetic 
progression. 

In this paper we investigate infinite arithmetic progressions, each term of 
which can be represented as a sum of a bounded number of integers 
belonging to a fixed set of positive density. If a set A has positive upper 
asymptotic density, then it is not true that there must exist a positive 
integer h such that the sumset hA contains an infinite arithmetical 
progression. For example, let (t,) be a strictly increasing sequence of 
positive integers such that t n + i/t,, tends to infinity, and let the set A be the 
union of the intervals [tZn + 1, t zn+ r]. Then A has upper asymptotic den- 
sity d,(A) = 1 and lower asymptotic density d,(A) = 0. For fixed h and all 
sufficiently large n, the sumset hA is disjoint from the interval 
[hr,,+ i + 1, t,,]. Thus, hA contains arbitrarily long gaps, and so cannot 
contain an infinite arithmetic progression. 

We shall prove that if A has positive lower asymptotic density, then 
some sumset hA does contain an infinite arithmetic progression, and we 
can bound both the number h of summands and the difference g of the 
arithmetic progression in terms of the density of A. In addition, we show 
that each term of the arithmetic progression can be represented as a sum of 
h pairwise distinct elements of A. 

These results are related to two problems of P. Erdiis and R. Freud. 
They conjectured that if S is a finite set of integers contained in [ 1, 3n] and 
card(S) > n, then there is a power of 2 that can be written as a sum of dis- 
tinct elements of S. Also, they conjectured that if T is a finite set of integers 
contained in [ 1,4n] and card(T) > 1z, then there is a square-free number 
that can be written as a sum of distinct elements of T. Recently, 
G. Freiman [l] has solved both these problems. His proof, however, does 
not yield a uniform bound for the number of distinct summands needed to 
represent the power of 2 or the square-free number; it shows only that 
log M summands suffice. In a subsequent paper we shall give a solution to 
the Erdos-Freud problem with a uniform bound on the number of sum- 
mands. 

In this paper we give an infinite analog of these results. We show that if 
d,(a) Z f and 3 / a for some a E A, then at least half the powers of 2 can be 
written as sums of at most live distinct elements of A. We also prove that if 
d,(A) b $ and 4 1 a for some a E A, then infinitely many square-free integers 
can be written as sums of at most six distinct elements of A. 

Notation. For any set A of nonnegative integers, the counting function 
A(x) denotes the number of positive elements of A not exceeding x. The 
lower asymptotic density of A is defined by d,(A) = lim infA(x)/x. The 
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upper asymptotic density of A is defined by d,(A) = lim sup A(x)/x. If 
d,(A) = d,(A), then A has asymptotic density d(A)= d,(A). For g3 1, 
define ACg) = {a’ > 0 ) a’ = a (mod g) for some a E A >. We write A - B if the 
sets A and B coincide for ail suffkiently large integers. The h-fold sumset of 
A, denoted hA, is the set of all sums of h elements of A, with repetitions 
allowed. Denote by ĥ  A the set of all sums of h distinct elements of A. The 
set A is an asymptotic basis of order h if hA -N, where N denotes the set 
of all nonnegative integers. 

For any real number w, let (w) denote the smallest integer n such that 
1z 3 w. Let {w> denote the fractional part of w, and let 
jlul 11 = min( { w }, 1 - ( w > ) denote the distance to the nearest integer. 

2. ARITHMETIC PROGREWONS 

In this section we obtain quantitative results on infinite arithmetic 
progressions contained in sumsets of sets of positive lower asymptotic 
density. If d,(A);>i, then an elementary counting argument shows that A 
is an asymptotic basis of order 2, and so 2A contains an infinite arithmetic 
progression with difference 1. Therefore, it is sufficient to consider only sets 
A such that d,(A) < +. 

An essential tool in this paper is Kneser’s theorem [2] in the following 
form: Let A be a set of nonnegative integers. Then either (i) d,(hA) > 
h d,(A) or (ii) there exists a minimal integer g >, 1 such that hA - hACg) and 
d,(hA) > h d,(A) - (h - 1 )/g. 

LEMMA 1. Let t > 0. Let A be a set of nonnegative integers. Define the 
set A’GA by 

A’= {aEAIa+idEA for some d>O and all Ii1 <t}. (*) 

Then d(A\A’) = 0. In particular, d,(A) = d,(A’) and d,(A) = d,(A’). 

Proof If d,(A\A’) >O, then Szemertdi’s theorem implies that A\A’ 
contains an arithmetic progression of length 2t - 1, but this is impossible, 
since the middle term of this arithmetic progression would belong to A’. 
Therefore, d(A\A’) = 0. 

LEMMA 2. Let A be a finite or infinite set of integers. Let h 2 1. Define 
A’by (*) with t=h. Then hA’ch”A. 

Proof. Let 12 = a, + . .. + ahE hA’. Let F be a maximal subset of the 
summands aj whose elements are pairwise distinct. If card(F) = h, then 
n E h h A. If card(F) < h, choose ak # F. There exists j # k and aj E F with 
aj = ak. Since ak E A’, it follows that there exists d > 0 such that ak + id E A 
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for all )iJ < h. Choose i > 0 such that ak + id $ F and aj - id 4 F, and replace 
ak and aj with ak + id and aj- id, respectively. This gives a new represen- 
tation of n as a sum of h elements of A. Define F’= (F\(ajj)u 
{ak + id, aj- id). The elements of F’ are pairwise distinct, and card(F’) > 
card(F). Let G be a maximal subset of the summands in the new represen- 
tation of n such that G 2 F’ and the elements of G are pairwise distinct. 
The summands in the new representation of M that do not belong to G are 
all elements of A’. Repeating the argument inductively gives a represen- 
tation of n as a sum of h distinct elements of A. This proves the lemma. 

THEOREM 1. Let A be a set of nonnegative integers such that d,(A) = 
WE (0,&l. DeJine k= (l/w). Then 

(i) there exists g < k2 -k stlch that (k + 1) n A contains an infinite 
arithmetic progression with difference g; 

(ii) there exists g < k + 1 such that (k2 -k) * A contains an infinite 
arithmetic progression with difference g. 

Proof Let s 3 1. Then d,((k + s) A) ,< 1 < ktr; < (k + s) d,(A). There- 
fore, the second case of Kneser’s theorem holds, and there exists a minimal 
integer g such that (k + s) A- (k+s) A’“‘. Then (k -ts) A contains an 
infinite arithmetic progression with difference g. 

If g = 1, then (k $ s) sl contains all sufficiently large integers. If g > 1, 
then (k + s) A - (k + s) A lg) and 

(k+s)w-(k+s-l)/g<d,((k+s)A)<l-(l/g). 

Since w >, l/k, it follows that 

l<g<k+(k*-2k)/s. 

For s= 1, this inequality implies that (k+ 1) A contains an in&rite 
arithmetic progression with difference g for some g< k’- k. For 
s= k2 - 2k, the inequality implies that (k2 -k) A contains an infinite 
arithmetic progression with difference g for some g< k $1. 

The only property of A that has been used in the proof thus far is 
d,(A) = w >O. Define A’ by (*) with t = k2 - k. Then Lemma 1 shows that 
d,(A) = d,(A’). Apply the results above to A’ instead of to A. Lemma 2 
implies that sums of k + 1 (resp. k’- k) elements of A’ with repetitions 
allowed can be replaced by sums of k + 1 (resp. k2 - k) distinct elements of 
A. This proves the theorem. 

COROLLARY. Let A be a set of nonnegative integers with d,(A) = w > 0. 
Let k= (l/w >, and let m be the least common multiple of the integers 
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1, 2, 3, .,.) k + 1. Then m(k2 -k) A contains all sufficieritly large multiples 
of m. 

ProoJ: Theorem 1 implies that (k* -k) A contains an infinite arithmetic 
progression with difference g for some g < k + 1, and so (k’ - k) A contains 
an infinite arithmetic progression with difference m. Hence, m(k2 - k) A 
contains all sufficiently large multiplies of m. 

Remark. Theorem 1 is best possible in the sense that for every k ZJ 1 
there exist sets A such that d,(A) = l/k, but the sumset kA does not con- 
tain an infinite arithmetic progression. For example, let {tn} be a strictly 
increasing sequence of positive integers such that t, + Jt,, tends to infinity, 
and let A be the set of integers in the intervals [t, _ 1, (t,/k) - A]. Then 
d,(A) = l/k and d,(A) = 1, and the sumset kA is adjoint from the interval 
(t, -k A, t,) for all large n. Since kA contains arbitrarily long gaps, it 
cannot contain an infinite arithmetic progression, 

There also exist sequences A with asymptotic density exactly i/k such 
that kA does not contain an infinite arithmetic progression. The following 
example uses the theory of continued fractions. 

LEMMA 3. There exists an irrational number a such that the set {q,, 1 of 
denominators of the comergents of the continued fraction of a contains 
infinitely matzy terms of every infinite arithmetic progression. 

Proof. Let (u,, v,), (ZQ, v,), . . . be an infinite sequence of ordered pairs 
of positive integers such that every ordered pair occurs infinitely often in 
the sequence. We shall construct a by defining the sequence of its partial 
quotients ak inductively. Recall the following two properties of the 
denominators of the convergents of a continued fraction: 

(i) q,=a,q,-l+qn-2 for n = 2, 3, . . . . 

(ii) (qn- 1y 4J = 1 for n = 2, 3, . . . 

Let a0 = 0 and a, = 1. Suppose that the partial quotients a,, a,, . . . . aZk- 1 
have been defined. Then qO, . . . . qgkp I are determined by (i). Since 
(qzk- 2, q2k- r) = 1 by property (ii), there exist positive integers a such that 
(aq,, _ 1 + qZk ~ 2r vk) = 1. (For example, let a be the product of the primes 
that divide ljk but not qlk- *.) Let aJk be a positive integer with this 
property. By (i), we have 

q2k=a2kq2kp1+q2k-2. 

Since (q2k, ok) = 1, there exist positive integers a such that 

aq2, + q2k - 1 = uk (mod ok). 



164 ERDijS, NATHANSON, AND SkRKijZY 

Let aZk + 1 be a positive integer with this property, By (i), 

Let r be the real number defined by the sequence of partial quotients 
a,, al, a2, . . . . Then for every pair of positive integers (u, o), the sequence 
{qk) contains infinitely many terms such that q z u (mod t’). 

THEOREM 2. For every positive integer k 3 2 there exists a set A with 
asymptotic density d(A) = l/k such that kA does not contain an infinite 
arithmetic progression. 

ProoJ Let CI be an irrational number satisfying the condition of 
Lemma 3. Define the set A by 

A = {al l/a’12 < (aa> < l/k- l/al”}. (**I 

Since the sequence {cI}, {2a}, {3x), . . . is uniformly distributed modulo 1, it 
follows that d(A) = l/k. Moreover, if q = a, + ... + akE kA, then (**) 
implies that 

(Iqccll > l/a:‘* + %a’ + l/a: z 

> l/(min(a,, . . . . ak))ltk 

> l/((a, + . . + a,)/k)’ ’ 

= (k/q)lJ2 

> q’? 

Suppose the set kA contains an infinite arithmetic progression. Then 
infinitely many terms q of this progression are elements of the set (qk) of 
denominators of the convergents in the continued fraction expansion of a. 
By the theory of continued fractions, every denominator q satisfies 

but this contradicts the previous inequality. 

Problem. If d,(A) = l/k, then (k + 1) A contains an infinite arithmetic 
progression with difference at most k2 - k. We do not know if (k + 1) A 
must contain an infinite arithmetic progression with difference at 
most D(k). 
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3. POWERS OF 2 AND SQUARE-FREE NUMBERS 

In this section we solve the Erdos-Freud problems in the infinite case. 

THEOREM 3. Let B be a set of nonnegative integers such that dL(B) > 1 
and 3 1 b* for some b* E B. Then infinitely many powers of 2 can be written 
as sums of either four or five distinct elements of B. 

ProoJ Note that the even powers of 2 belong to the congruence class 1 
(mod 3) and the odd powers of 2 belong to the congruence class 2 (mod 3). 

Let A = B\{ b*}. Define A’ by (*) with t = 4. Applying Kneser’s theorem 
to the sumset 4A’, we obtain an integer g < 6 such that 4A’ - 4((A’)‘g’) and 
d,(4A’) > 413 - 3/g. 

If g = 1, then every large integer belongs to 4A’. 

If g = 2, then 4A’ contains all large even integers. 

If g = 4, then 4A’ contains all large multiples of 4. 

If g= 5, then d,(A’) > f implies that A’ contains representatives of at 
least two congruence classes modulo 5, and so 4A’ contains all large 
numbers. 

If g= 6, then d,(4A’) 22, and so 4A’ contains all sufficiently large 
elements of five congruence classes modulo 6. In particular, 4.4’ contains 
all sufficiently large integers in a nonzero congruence class modulo 3. 

In these five cases, 4A’ contains infinitely many powers of 2, each of 
which is, by Lemma 2, a sum of four distinct elements of B\ { b* }. 

Finally, let g = 3. If 4A’ contains an integer not divisible by 3, then it 
contains all sufficiently large elements of a nonzero congruence class 
modulo 3, and we are done, If 4A’ consists of all large multiples of 3, each 
of which is then a sum of four distinct elements of B\(b* }, then each 
sufficiently large integer in the nonzero congruence class b* (mod 3) is a 
sum of five distinct elements of B. This concludes the proof. 

LEMMA 4. Let g >, 2 and r >, 0. Let d = (g, r). There are infinitely many 
square-free numbers q such that q = r (mod g) if and only if d is square-free. 

Proof If p2 divides d for some prime p, then p* divides every element 
of the congruence class r (mod g). Now let d be square-free. Then 
(g/d, r/d) = 1, and th ere are infinitely many primes p such that p E r/d 
(mod g/d) and (p, d) = 1. Then pd is square-free and pd= r (mod g). 

THEOREM 4. Let B be a set of nonnegative integers such that d,(B) > + 
and 4 t b* for some b* E B. Then there are infinitely many square-free num- 
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bers that can be represented as sums of either five or six distinct elements 
of B. 

Prooj Let A=B\{b*}. Define A’ by (*) with t =5. Applying Kneser’s 
theorem to 5A’, we obtain g>, 1 such that 5((A’)‘g’) N 5A’ and d,(5A’) 2 
514 - 4/g. 

The square-free numbers have asymptotic density 6/n*. If g> 4, then 
d,(5A’) > 1 -6/x2, and so 5A’ contains a set of square-free numbers of 
positive density. Lemma 2 implies that each of these numbers is a sum of 5 
distinct elements of B. Therefore, it suffices to consider only g < 4. 

Let g < 4. Then g is square free. Since 5A contains an arithmetic 
progression with difference g, Lemma 3 implies that 5A’ contains infinitely 
many square-free numbers, each of which is a sum of 5 distinct elements of 
B\P* 1. 

Let g =4. Then 5A’ contains an arithmetic progression of the form 
r + 4i, each element of which is a sum of 5 distinct elements of B\{ b* ). If 
4 [ r, then (r, 4) is square free and we are done. If 4 1 r, then each element of 
the arithmetic progression b* + 4i is a sum of 6 distinct elements of B. Since 
4 j’ b*, this progression contains infinitely many square-free integers. This 
completes the proof. 
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