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I have written many papers with similar titles during my long life . I will try to write this
paper in such a way that it will not entirely be contained in the union of the set of my
previous papers and that at least some of the open problems I state will not be entirely
hopeless . Perhaps the most interesting and significant results are those connected with
van der Waerden's and Szemerédi's theorem, but since I and others have written a
great deal about these questions, I will include only a short discussion of these problems
at the end of the paper .

For a rich source of solved and unsolved problems in combinatorial number theory,
see [10, 20] .

First of all I mention a few old problems and results . First a very simple old
well-known result of mine .

1 . In December 1933 I observed that if 1 <_ a, < . . . < a„+ , < 2n, then for at
least two indices i and j a ;la;, that is, among any n+ 1 integers < 2n, at least one divides
the other . My first proof was not as simple as it should have been, but M . Wachsberger
(Dr. M . Svéd) and E. Vázsonyi independently argued as follows : a ; = 2"'b;, b; odd. Thus
two a's belong to the same b, and therefore one divides the other . The integers
n+ 1, . . . , 2n show that this result is best possible .

Perhaps one of my first theorems, which I found in 1932, states : There is an
absolute constant C so that if a, < a 2 • . • is a finite or infinite sequence of integers no
one dividing the other, then

É 1
< C .

a ; log a ;

The proof is simple but not entirely trivial . I conjectured that the sum in (1) is maximal
if the a's are the primes . I expect that this problem can be decided with the help of a
computer, some patience, and perhaps not too many new ideas . For more related
problems and results of this type, see the survey paper of Sárközy, Szemerédi, and
myself. (Selfridge convinced me that the proof will be more difficult than I thought .)

In 1936 I observed that if 1 < a, < . • . < akn < n is a sequence of integers for
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where a(n) denotes the number of primes not exceeding n and cl , c2 are positive
absolute constants. Probably there is a positive absolute constant c for which

max kn = a(n) + (c + o(1)) n3 / 4 /(log n) 1/2 .

I was never able to prove (3) . 1 should perhaps make a remark about the proof of (2),
since it is basically graph- theroetical . It depends on the following result of E . Klein and
myself: Denote by T(n ; C4 ) the Turán number of C4 , that is, the smallest integer for
which every graph of n vertices and T(n;C4 ) edges contains a C4 (a cycle of length 4) .
We proved

c,n 3/2 < T(n; C4) < c2n 3/2 .

	

(4)

Curiously we failed to formulate the general problems on extremal graphs-this was
done 2 or 3 years later by Turán, who did not even know of our paper, and as well
deserved punishment for our failure, these numbers are now called Turán numbers .
For references on extremal graph theory, see the excellent book of Bollobás or the
excellent survey paper of Simonovits, and [4, 5, 18, 21] .

2 . Here is another elementary problem in number theory that nevertheless leads to
a problem that, as far as I know, is still open . Observe that if 1 < a, < . . . < a l :5 n,1 >
n/2, then at least two of the a's must be relatively prime. Denote by f(n; t) the largest
set of integers 1 < a, < . . • < a,, < n, for which there is no set of t + 1 a's that is
pairwise relatively prime. I expect that one gets f(n; t n ) by taking the t smallest primes
2, 3, . . . , p, and taking the set of all their multiples not exceeding n . This has been
proved for k < 4, but for k = 4 the proof is already quite long and cumbersome . The
conjecture would follow if one could prove that t is obtained by taking the set of
multiples not exceeding n of a set of t primes . If this is proved, then denote 1G(gl , . . . , q„
n) the set of multiples of q,	q, not exceeding n. To complete the proof it suffices to
show that ~(q	q,) is maximal if the q's are the first t primes . In my lecture at
Yenan Teachers College I stated that I think this is simple but I do not quite see how to
do it . Fan Chung, who translated my lecture, said this must be trivial . I had another
look at it and saw that she is indeed right . Let Q,, Q2. . . . be the complement of the q's,
that is, the set of the other primes . Clearly 4G(q,, q 2, . . . , q„ n) equals n minus the
number of integers not exceeding n composed of the Q's . The number of integers < n
composed of the Q's is clearly minimal if the Q's are as large as possible or if q i = pi,
Q.E.D .

3. R . L . Graham stated about 15 years ago the following very nice conjecture : Let
1 < a, < a 2 < • • • < a n be any set of n integers. Then

max

	

>_ n.
1_i<jsn (ai, a)

(3)

COMBINATORIALERDŐS:

	

NUMBER THEORY 133

which the products aiaj are all distinct, then

n3/4

	

n3/4

(2)
kna(n) +

cl (log n)3t2 < max

	

< 7r(n) +
c2 (log n) 3/ 2 '
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Recently M. Szegedy proved this conjecture for sufficiently large n . His proof is not
too simple and is very ingenious [25] .

4. A little-known conjecture of Hegyvári states : Let G(n) be the graph whose
vertices are the integers i < n, and i is joined to j if i Ij (or if [i, j] < n) . Denote by f(n),
respectively, F(n) the longest path of this graph. Prove f(n) and F(n) are both o(n) .
These conjectures were recently proved by Pomerance, but the proof is surprisingly
difficult [24] . Is it true that F(n)/f(n) ~ or at least F(n) - f(n) -? The second
conjecture must certainly be true. It would perhaps be worth while to get an asymptotic
formula or at least good upper and lower bounds for these functions .

5. Now perhaps I should discuss some problems and results on additive number
theory that occupied me a great deal over the last few years . The classical problems
(Goldbach, Waring) will be ignored, not because I do not consider them important,
but because they perhaps cannot be attacked by combinatorial methods. Let A =
{1 < a, < a 2 < • • • I be an infinite sequence of integers, and denote by f2(n) the
number of solutions of n = a ; + a;. Iff(n) > 0 for all n, then A is called a basis of order
2 . Iff(n) > 0 for all n > no, then A is called an asymptotic basis of order 2 . Sidon asked
me more than 50 years ago : Does there exist a basis for which for every e > 0

(5)

as n ~?
I first thought that (5) is easy and the answer is affirmative . Twenty years later I

was able to prove (5) by probabilistic methods . In fact, I showed that there is a
sequence A = {a,, a 2 , . . . } for which

clog n < f(n) < c 2 1og n .

	

(6)

Inequality (6) seems to be the natural boundary of the probabilistic methods, and in
fact I conjectured long ago that there is no sequence A for which

lim
log

	 = c(0 < c < ~) .

	

(7)
g

I offer 500 dollars for a proof or disproof of (7) and I offer 100 dollars for a proof of
(5) by an explicit construction . Sárközy and I proved that

(f(n) - c log n)
(log n) iI2

cannot tend to 0 . Sárközy and I further proved that if g(n) is an increasing function of
regular and slow growth, then there is a sequence A for which

	 f(n) 	1 .
g(n)log n

Perhaps (7) can be strengthened in the following way : There is an absolute constant
C so that in (6) c 2 > (1 + C)c,, that is, c 2 and c, cannot be too close . Further, perhaps if



lim supf(n) _ -

If true, (8) is probably very deep . An old conjecture of Turán and myself (for which
I often offered 500 dollars) states that if A is a basis of order 2, then

(9)

that is, iff(n) > 0 for all n > no, then f(n) cannot be bounded. Perhaps (9) follows
already if we only assume that f (n) > 0 holds for a sequence of density (or perhaps only
upper density) 1 . The following question is perhaps of some interest : Is it true that if
f (n) > 0 for a sequence of positive density, then lim sup f (m) _ -? The following finite
form of this question seems interesting to me : Let a, < ag < • , • < a i < n be a
sequence of integers for which the number of integers m < n for whichf(m) = 0 is less
than 5,n . Is it then true that for some u, f(u) > r . If this is true we probably can also
assume u < n. I have to apologize to the reader if I overlooked a trivial counterexample,
but I didn't have time to consider these questions seriously . This conjecture seems
difficult and it certainly is much weaker than (4) . The analogous conjecture for
multiplicative representation is true and is not very hard to prove . Rényi and I proved
by probabilistic methods that there is a sequence A satisfying a k < ck' for which

x
f(n)' < CX.

	

(10)
n-1

On the other hand, perhaps if A is a basis of order 2, then

1

	

f(n)2

	

~.
X n - ,

If it is true, no doubt (11) is very difficult ; it is very much sharper than (9), and even
(9) is probably deep . Equation (11) has recently been disproved by I . Ruzsa .

By the way, it is a simple exercise to construct a sequence A for which every positive
integer n can be written uniquely in the form a ; - a i . It is not known if there is such a
sequence for which ak l kZ " ' or even a,/k' 0. The greedy algorithm easily gives such a
sequence for which ak < ck' . It is not difficult to prove that if a k < ck' for every k, then
the number of solutions of n = a; - ai cannot be bounded . This last statement follows
from the fact that if a k < ck' and F(n) denotes the number of solutions of a; - a i < n,
then F(n)/n- - .

Denote by A,(n) the largest integer l for which there is a sequence I < a, <
aZ < . . . < a, < n for which all the sums

~- dia i , Y-, d i -r,

	

di >0
i

are all distinct . Turán and I proved

A 2(n) < n 1 /2 + cn 1 /4 .

	

( 12)
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one only assumes that a,< < ck' for every k, then

lim

	

for

	

0.
to

n
n

(8)sup

	

> c 1 ,

	

some c, >
g
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Let

1 sa,<a 2 < • • • < a,sn,t>-c,n,n>no(r) .

	

(12')

Determine the smallest c, for which (12') implies that there is some m for which
f (m) >- r. Or one could also ask for the smallest c ; for which t, >_ c r n'/ 2 implies that for
some m, m = a i - a; has at least r solutions . It is easy to see that both c, and c, are
0(r 1/2) . Perhaps the following question is more interesting : Let 1 < a, < . . . < a k s n
be such that the number of distinct integers of the form a; + a; is (1 + 0(1)) (z) . I can
show that k >_ (1 + 0(1))(2/ -,T3-)n 1/2 is possible . To see this, let 1 _< b, < b 2 < • <
b, s n/3 be such that the sums b i + bj are all distinct and 1 is maximal . Add to this
sequence the numbers n - b, > . . . > n - b,. The b's and n - b's clearly have the
required properties . I do not see whether k > (1 + E)n'/2 (2/3'/ 2 ) is possible . Lindstrom
improved (12) to A2(n) < n'/ 2 + n'/ 4 + 1 . Chowla and I observed that Singer's perfect
difference set implies A 2 (n) > n'/ 2 , if n = p2 + p + l, p prime or a power of a prime and
A 2(n) > (1 + o(1))n'/ 2 for all n .

Bose and Chowla by an extension of Singer's construction proved that for every r

A,(n) > (1 + o(1))n' I '.

Bose and Chowla observed that our proof with Turán does not seem to give

Ar(n) < (I + E)n'lr

	

(13)

for r > 2 . Inequality (13) very likely holds for every r, but as far as I know is still open .
The difficulty in proving (13) is that in the proof of (12) one could replace a, + aj by
a i - a; and as stated, if a k < ck 2 , then F(n)/n - if F(n) denotes the number of
solutions of a i - a j < n . It seems quite impossible to use this method for odd r, and
there are difficulties for even r if r > 2 . We all believe that (13) remains true even if we
only allow sums for which d i = I (i .e ., sums a i , + aiz + + a,,), but at the moment
I do not see how to attack this question .

Further I cannot prove that if A is an infinite sequence satisfying a k < ck' for every
k, then the triple sums a, + a; + a, cannot all be distinct . Inequality (13) and this are
perhaps the most outstanding open questions here . Turán and I conjectured

A 2(n) = n'/2 +0(l) .

	

(14)

I was always convinced that (14) holds, but H. Taylor and I . Ruzsa independently
of each other convinced me that the upper bound in (14) is probably false . If n = p 2 +
p + 1, Singer showed that there are p + 1 residues (mod p2 + p + 1), say a,, a2, . . . ,
ap+ ,, for which every nonzero residue can be uniquely expressed in the form a; - a i . If
for every C there is such a set for which for some i we have a i+ , - a i > Cp"', p > p o (C),
then the upper bound in (14) fails . Perhaps (14) should for the time being be replaced
by the more modest conjecture : for every E > 0

A2(n) = n'/2 + O(n`) .

	

(14')

When I first met Sidon in 1932 he also asked me the following problem : A sequence
a, < a 2 < . . . is called a B (,`) sequence if the number of solutions

y-Ei a i =n,

	

Y-, e i sr
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is <t . In particular, in a BZ (B~' )) sequence the sums a,+ aj are all distinct . How slowly
can the terms of a BZ (or more generally of a B ;`)) sequence increase? It is easy to see
that (by the greedy algorithm) there is a BZ sequence for which a k < ck' ; a k = o(k)
was open for a long time, and finally a few years ago Ajtai, Komlós, and Szemerédi
proved that there is a B Z sequence for which a k < ck'/log k . This seems to be the
natural boundary of their very ingenious method . Very likely there is a BZ sequence for
which a k < k 2+< for k > k o(e) . At the moment this seems rather hopeless . Rényi and I
proved by the probability method that for t = t(e) there is a B(2`) sequence for which
ak < k2+`holds . I proved that lim inf a k/k2 can be finite for a B Z sequence, but that for
infinitely many k we must have

ak > ek e log k.

	

(15)

It would be very interesting to decide whether (15) can be improved . In several
forthcoming (I hope not posthumous) papers Sárközy, V . T . Sós, and I hope to discuss
many further related problems and results . Here I want to mention just one more
problem that was first mentioned in a joint paper with Nathanson and that we
"rediscovered" later : Let A be any sequence of integers, and denote by B(X) the
number of integers n < X for which f(n) l, that is, for which f(n) = 0 or f(n) > 1 . It
is not hard to show that for every c > 0 there is a sequence A for which B(X) _
o(X' 1") . We conjectured

B(X)/Xi/2

	

(16)

Ruzsa stated that he proved B(X) > X'1' and Szemerédi claimed B(X) > X'12- for
every c > 0 if X > Xo (c) . Unfortunately none of these proofs have been published .

For many of the results stated see the excellent book [21 ] ; also [ I ] and [13] .
For many references on these and related problems see the very interesting papers

of [3], [15], [17] .

6. Now I will discuss some of my work with M. Nathanson [ 11, 12]. A sequence A
is called an asymptotic basis of order r if every n > n o is the sum of r or fewer of the a's .
We will mostly restrict ourselves to the case r = 2 . An asymptotic basis is called
minimal if the omission of any of its elements destroy the basis property, that is, if for
every i there are infinitely many integers n for which n cannot be represented as the
sum of 2 (or more generally r) terms from A - a ; . Nathanson proved that there are
minimal asymptotic bases for every r and that there are asymptotic bases that do not
contain minimal asymptotic bases . We proved that if f(n) > c log n, c > log 4/3, then
A contains a minimal asymptotic basis of order 2 . On the other hand, we proved that
for every k there is a sequence A for which f(n) >_ k for all n > n o , but A does not
contain a minimal asymptotic basis . Our most interesting open problems are : Is there
an A for which f(n) ~ and that does not contain a minimal asymptotic basis? Is it
true that if f(n) > c log n for some c > 0, then A contains a minimal asymptotic
basis?

In a forthcoming paper we show that if A is such thatf(n) > C log n where C is a
sufficiently large constant, then A can be decomposed as the union of two disjoint
sequences A, U AZ so that both A, and AZ are asymptotic bases . Perhaps this remains
true iff(n) > C log n is replaced by f(n) > c log n, but perhaps there is an A for which
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f(n)

	

~, but A cannot be decomposed as the disjoint union of two bases A, and A2 .
(We know that f(n) > k does not imply such a decomposition .)

Perhaps if A, n A2 is empty and A, and A2 are both asymptotic bases of order 2,
then A, U A2 always contains a minimal asymptotic basis . Unfortunately, at the
moment we can neither prove nor disprove this attractive conjecture .

Define a basis to be thin if A(n) < cn 1 / 2 for some c . Clearly, if a basis is not thin,
then (11) holds. We hoped that every thin minimal basis can be decomposed as the
union of r (perhaps r = 2) disjoint sets A„ U i-1 A; = A, so that for every i, i = 1, 2, . . . ,
r the set of integers of the form x + y, x, y e A ; has density 0 . Originally I stated this
conjecture without the assumption that the basis is minimal . Volkmann pointed out
that there are trivial counterexamples, but the conjecture can perhaps be saved if we
assume that the basis is minimal. (For a similar error, see [10, p . 47] .) This conjecture
is perhaps completely wrongheaded . For the proof of (11) it would suffice to show that
every thin basis A has a subset A' for which A'(X) > cX 1/2 for every X and such that
the density of the integers of the form x + y, x, y e A' is 0. This conjecture could also be
completely wrong, and our excuse for making it is that we know so few thin bases (in
fact, I . Ruzsa disproved this conjecture) .

7. Now I will discuss some special problems on additive number theory, some of
which have been partially settled during our recent meeting at Hakone .

Several years ago Silverman and I asked : Let 1 < a, < a 2 < • • • < a, < n be a
sequence of integers such that none of the sums a, + aj are squares . We at first thought
that perhaps max t„ = n/3, and that this is reached if a i = 1 + 3i. Massias soon showed
that in fact max t„ >_ (I 1/32)n by finding 11 residue classes mod 32, no two of which
add up to a quadratic residue. I then conjectured that max t„ _ (I In/32) + O(1) .
Lagarias, Odlyzko, and Shearer [22] proved this if the a's are residue classes mod d for

Thus t o is definitely less than the trivial bound n/2, but we are very far from the
perhaps too optimistic conjecture (11/32)n + O(1) . Then I posed the following
perhaps interesting question : Let n, < n 2 < • • • be an infinite sequence of integers and
a, < a2 < • • • an infinite sequence of integers so that a; + a; n k for all i, j, k . For
which n, < n2 <

	

does it then follow that

fim sup A(x)/x <
1
2?

	

(18)

If the n's increase sufficiently fast, then fim sup A(x)/x ='/2 is certainly possible .
Perhaps nk+ ,/n k 1 implies (18) . (If the n's are uniformly distributed in the residue
classes, all n, odd are an obvious counterexample .)

I recently asked: How many integers 1 < a, < a 2 < • • • < a, < n can one give so
that none of the subset sums E;^ 1 e ; a ;, e; = 0, or 1 are squares? It is easy to see that

t„ > (I + o(1))2'1'n'1'

	

(19)

is possible . To see this, let p be the least prime greater than n 2/'2 - '/' and let a; = ip, i <
2' 1 'n'í' . The sum of these a's is clearly never a square since all subset sums are

some d. Their proof is quite difficult. They further proved that if 1 < a, < a 2 < •
a,_ n is any sequence of integers for which a; + a; is never a square, then

•

	

<

max t„ < 0 .475n . (17)
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multiples of p and none of p2 . I could never get a better lower bound than (18), but
could not even prove t" = o(n) . Noga Alon [2] showed

cn
t„ <

tog n

	

(20)

Both (18) and (19) are probably far away from the truth . Freud and I found an
infinite sequence a" < n°, a about 10, so that none of the subset sums are squares . Ten
is very far from the truth . We would have liked to show at least a" < cn 3 , but were
unsuccessful . (Lipkin, Noga Alon, and Freiman have many results on these
problems .)

Freud and I then posed the following two seemingly trivial problems, which as far
as I know are still open : Let 1 < a, < a 2 < • • • < a x+ , < 3x . Is it true that some subset
sum X ,' c; a„ E, = 0 or 1 must be a power of 2 . The multiples of 3 show that if true, this
is best possible . (This was proved by Freiman .)

Let 1 < a, < • • • < a y,, < 4y. Then some subset sum must be squarefree . The
multiples of 4 show that if true the result is best possible, and perhaps the sum of 2 or at
most three of the a's will already have the required properties . Clearly, many related
problems can be stated, but we had no success with any of them and perhaps we
overlook a trivial point . (A very simple proof was found by Filaseta .)

R. L . Graham and I very recently asked : Is it true that if n > n o(c) and

1<a,<a 2 < • • •< a,<n,

	

t>(1/z-c)n,

	

(21)

then 2n is a subset sum of the a's? That is, 2n = E •̀_ , E, a i c, = 0 or 1 . We thought that
perhaps t = (n/3) + 1 (if true, this is clearly best possible) . During the meeting in
Hakone, Noga Alon proved (21) with t = 2/5n (he now improved this to t =
(1/ 3 + E)n) . Graham and I also asked : Letf(n) be the largest integer so that for every
m there is a set off(n) integers 1 < a, < a 2 < • • < a, < n, t = f(n) so that m is not a
subset sum of the a's . We conjectured

We showed

f(n) _ (2 + 0(1) ) lo n •g n

f(n) >
1
+0(1) I

log

I`

	

/ g n

(22)

(23)

To show (23) observe that we can assume m < 1 + 2 + • • • + n = (n2 + n)/2 . Let p
be the least prime that does not divide m . From the prime number theorem, we have
p < (2 + 0(1)) log n and if we put a; = ip, 1 - i < n/(2 log n), then m is not the subset
sum of the a's, which proves (23) . During our meeting Noga Alon proved f(n) <
(cn/log n) ; thus (23) is not very far from the truth . It would also be of interest to know
how to choose m = m(n) to obtain the value of f(n) [ 2] .

We also briefly discussed the following more general problem . Let f,(n) be the
largest integer so that for every choice of m,, . . . , m, there is a set of f,(n) integers 1 <
a, < a 2 < • • • < a, < n, t" = f,(m) so that none of the subset sums 2 ;;^ 1 c; a i , c; = 0 or 1
is one of the m„ i = 1, 2, . . . , r . It seems interesting to determine how f,(n) decreases as
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r increases and how we have to choose m,, . . . , m, to getfr(n) . Our oldf(n) is of course
f, (n) .

8 . Now I would like to discuss a few older problems that seem to have been perhaps
undeservedly neglected . Not to make the paper too long, I will restrict myself to a few
of them .

1 . Sárközy and 1 [14] considered the following question : Let A = {a, < a z < • • •} be
an infinite sequence of integers, and assume that no a ; divides the sum of two larger a's .
What can be said about A(x) = Ea,_ 1? The reason that we restricted ourselves to
aj (aj + a,), i < j, i < l was that we wanted to exclude the case 2a; = aj + a,, which
leads to the well-known problem of three-term arithmetic progressions . We proved

A(x) = o(x)

	

(24)

and that (24) is best possible, that is, iff(x) - as slowly as we please, then A(x)
o(x/f(x)) does not have to hold . On the other hand, we conjectured that for infinitely
many x, perhaps A(x) = o(x/log x) or even A(x) < x l- ` will hold, and we further
conjectured that 1 /a, must converge. It is rather annoying that we could not prove
this rather attractive conjecture. Perhaps even more annoying is the finite version of
our problem : Let a, < a 2 < • • • < a, < n be a sequence of integers and assume that
a; /} (a; + a,) for every i < j < l . One would expect that then

Equation (25), if true, is best possible . This can be seen by the integers (2n/3) < a, s n .
This conjecture, if true, should not be hard to prove and perhaps we overlooked a
simple argument. The following related problems should perhaps be mentioned .
Assume that the finite sequence A is such that no a ; divides the sum of r or fewer a;,
aj > a, . Here one would guess that

max A,(n) _

n
max t„ =

3
+ 1 .

	

(25)

n
r +

1 +0(1),

where the extremal sequence is given by the integers n, n - 1, . . . , n - t„ where t, is
the largest integer for which our property is satisfied . The same conjecture can be
made if we assume that no a divides any sum of larger a's . Here one would assume that
the largest set of integers with this property is given by the integers in {n - t, n} with
(z) < n if A(n) = 2n + O(1) . A(n) < c~ can probably be proved by the methods of
Szemerédi and Olson . See also [14] and [26] .

IL Szemerédi and I [16] considered the following problem : Let a, < a2 < • • <
a„ be any set of n distinct integers. Denote by b, < b 2 < • • • < bm the set of all integers
that can be written in the form a, + a; or a ; a; . Determine or estimate as accurately as
possible min m,,. It seemed to us that if there are few distinct integers of the form a; +
a;, then there must be many distinct integers of the form a; a; and vice versa . We
conjectured m„ > n 2- for every E > 0 if n > no(E), and proved that for a certain c > 0
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mn > n", but that there is a sequence a, < a 2 < . . . < a„ for which

m < n z-c/loglogn .
n

The upper bound seemed to us to be close to the truth .
For further problems of a related nature, see [16] .

111 . Divide the integers 1, 2, . . . , 2n into two disjoint sets a,, a z , . . . , a n ; b,, b z , . . . ,
b n , with n elements in each class . Denote by Mk the number of solutions of a ; - b; = k
and put

M = M(n) = min max Mk
k

f(n) 3
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where the maximum is to be taken for all -2n < k < 2n and the minimum for all the
(2„ ) divisions of the integers into two disjoint classes with both having n elements . I
asked for the determination or estimation of M more than 30 years ago. The best upper
bound is still M < 0.4n . The best lower bound is due to L . Moser [23]

M > V4 - 15(n - 1) > 0.3570(n - 1) .

As far as I can tell, the problem has been completely (perhaps undeservedly)
forgotten .

IV. Let a,, a z , . . . , a n be n real numbers, all different from 0 . Denote by f(n) the
largest integer so that for every sequence a,, a,,. . . , a n one can select k = ft n) of them
a ;, . . . , a,k so that the sum of two of these a's never equals a third . I proved [7]

(26)

Very likely (26) is not best possible, perhaps f(n) >_ 3n/7 . If in the representation a„ +
a ü = a, we insist that a

	

v, then we could hope that

f(n) 2
(27)

It is surprising that this problem has been completely forgotten, even by myself . A few
years ago Ruzsa independently rediscovered the conjecture ; I told him what a nice
problem, how silly that I did not think of it myself .

For many other problems on combinatorial number theory, see [6], [8], [9] .

9. Finally I present a very short discussion of some of the questions connected with
van der Waerden's theorem . Denote by W(n) the smallest integer for which if we
divide the integers from 1 to W(n) into two classes, at least one of the classes contains
an arithmetic progression of n terms. van der Waerden proved about 60 years ago the
now classic result that W(n) exists for every n . van der Waerden's upper bound for
W(n) is probably very far from the truth ; it tends to infinity as fast as the Ackermann's
function . The first and most important task would be to prove or disprove that W(n)
does not tend to infinity so fast, that is, to give better upper bounds for W(n) . This has
recently been accomplished by Shelah ; his upper bound is probably still far too large .
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More than 50 years ago this problem lead Turán and me to conjecture that van der
Waerden's theorem is really a density theorem and that in fact every sequence of
positive density contains arbitrarily long arithmetic progressions . More precisely :
Denote by r k (n) the largest integer for which there is a sequence 1 < a, < a2 < • • • <
a, s n, t = rk (n) so that the a's do not contain an arithmetic progression of k terms. We
conjectured that for every k

Heath-Brown certainly proved r 3 (n) < enl(log n)`, e > 0 is a small positive number,
and Szemerédi and Pintz proved r 3 (n) < n/(log n)'I4.

Some time ago I offered 1000 dollars for a proof or disproof of (28) . About 15 years
ago Szemerédi proved (28). His proof, which is a masterpiece of combinatorial
reasoning, already had many applications for many other combinatorial problems . A
few years later Fürstenberg proved (28) by using methods of ergodic theory ; no doubt
his method will have many more applications in combinatorial number theory and
other subjects .

About 30 years ago I conjectured that if E ;, , 1/a" then the a's contain
arbitrarily long arithmetic progressions . This conjecture would in particular imply that
the primes contain arbitrarily long arithmetic progressions .

I offer 3000 dollars for a proof or disproof of my conjecture . It is not even known
that if a, < a 2 < . . . contains no three-term arithmetic progression, then E,_, 1 /a ; <
- . This would of course follow if the following were in fact true

r 3 (n) <

and Lovász and I proved that for every n

n
(log n)"

Perhaps, in fact, for every k and 1 we have for n > n o (k, 1)

r k (n) < (,og n
f

	

(30)

If true, (30) would of course imply my 3000 dollar conjecture . Unfortunately, none of
the results so far give an improvement of the upper bound of W(n) given by van der
Waerden . The first exponential lower bound for W(n) was given by Rado and myself,
and our bound was later improved by W. Schmidt. The current best lower bounds are
due to Berlekamp, Lovász, and myself. Berlekamp proved that for every prime p we
have

W(p + 1) > p2°,

	

(31)

c2"
W(n) >

		

(32)
n

r k(n) = o(n) . (28)

More than 30 years ago K . F . Roth proved

cn
(29)

r 3 (n) <
log log n
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The first step (which perhaps will not be too hard) is to prove

W(n)

We all believe that

2"
(33)

W(n) 1 /"

	

-,

but even W(n) > (2 + E)" for n > no (E) seems to be beyond our reach at present .
Define W(k, 1) as the smallest integer so that if we split the integers 1 < n <

W(k, 1) into two classes, either the first class contains an arithmetic progression of k
terms or the second class contains an arithmetic progression of 1 terms . W(n, n) _
W(n) . These van der Waerden numbers have, as far as I know, not been considered at
all . Observe that if a, < a 2 < . . . < a, < n does not contain an arithmetic progression
of k terms, then t < r k(n), and thus the complementary set of the a's contains an
arithmetic progression of length at least n/[r k (n)1, or

n
k,

rk(n»
< n .
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(34)

Is it true that W(k, l) is significantly less than the trivial bound given by (34)? The
simplest problem is : Let 1 a, < . . . < a, < n be such that it does not contain a
three-term arithmetic progression. Is it then true that the complementary sequence
contains an arithmetic progression of more than (1 + c)n/r 3 (n) terms?

Freud and I tried to investigate the following problem : Let h(n) be the largest
integer for which if we decompose the integers 1, 2, . . . , n into h(n) disjoint sets A,,
. . . . A,, (n) , then there are always two of them, say A ; and A;, whose union contains a
four-term arithmetic progression . It would be of interest to determine or estimate h(n)
as accurately as possible . Clearly, many generalizations are possible, but we had no
success even with h(n) .

To end this paper I would like to mention one of my oldest conjectures, which was
inspired by van der Waerden's theorem and which is about 55 years old . Divide the
integers into two classes in an arbitrary way, or define a function f(n) that is either + 1
or -1 . Put

Is it true that

lim sup g(d, m)

The connection with van der Waerden's theorem is clear . I restrict the arithmetic
progressions much more, but we demand much less . We do not demand that all terms
be in the same class, but only that one of the classes should have a majority that is
unbounded. A more precise quantitative formulation of the conjecture is : There is an
absolute constant c > 0 so that for some d and m

m

f(kd)
.d-

g(d, m) _

	

f(kd) .
k=1

m

> c log n .

	

(35)



144

	

ANNALS NEW YORK ACADEMY OF SCIENCES

It is easy to see that (35) if true is best possible . A weaker form of the conjecture states :
Let f(n) be a multiplicative function that only assumes the values ±1 [i .e .,
f(ab) = f(a) f(b) ] . Is it then true that

n
~_f(k)
k-1

is unbounded? This was conjectured independently also by Chudakov . Perhaps for
every e the density of integers n for which I Ek_, f(k) I < c is 0 . See [26] and [27] .
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