Preprints of the Institute
- H. Andreka, J. X. Madarasz, I. Nemeti:
On the logical structure of relativity theories. Part I
- H. Andreka, A. Kurucz, I. Nemeti and I. Sain:
Applying Algebraic Logic; a General Methodology
- L. Babai, A. J. Goodman, L. Pyber:
On Goups Without Large Corefree Subgroups
- L. Csirmaz:
Secret sharing schemes on graphs
- L. Csirmaz:
Dealer's random bits in perfect secret sharing schemes
- L. Csirmaz:
Program correctness on finite fields
- S. Dobos, Gy. Orosz: Competition Problems for Primary Schools
(in Hungarian)
- I. Juhasz, Zs. Nagy, L. Soukup, Z. Szentmiklossy:
What makes a space have large weight?
- I. Juhasz, Zs. Nagy, L. Soukup, Z. Szentmiklossy:
Intersection properties of open sets, II
- A. Lubotzky, L. Pyber, A. Shalev:
Discrete groups of slow subgroup growth
- J. Madarász:
Craig interpolation in algebraizable logics;
meaningful generalization of modal logic
- I. Németi:
Strong representability of fork algebras, a set theoretic foundation
- I. Németi, I. Sain:
Fork Algebras in Usual and in Non-well-founded Set Theories
(an Overview)
- T. Nemetz:
Statistical decision: classroom experiences
- P. P. Pálfy and L. Pyber:
Small groups of automorphisms
- L. Pyber, A. Shalev:
Groups with super-exponential subgroup growth
- I. Sain, V. Gyuris:
Finite Schematizable Algebraic Logic
- N. Simányi and D. Szász:
The K-Property of Hamiltonian Systems with Restricted Hard Ball Interactions
- N. Simányi:
The Characteristic Exponents of the Falling Ball Model
- N. Simányi, D. Szász:
The Boltzmann-Sinai Ergodic Hypothesis for Hard Ball Systems
- N. Simányi, D. Szász:
Hard Ball Systems are Fully Hyperbolic
- N. Simányi:
Ergodicity of Spheres in a Box
- G. Simonyi:
Entropy splitting hypergraphs
- D. Szász:
Boltzmann's Ergodic Hypothesis, a Conjecture for Centuries?
- G. Tardos:
Transversals of 2-intervals, a topological approach
- B. Tóth:
The `True' Self-Avoiding Walk with Bond Repulsion
on Z: Limit Theorems
- B. Tóth:
`True' Self-Avoiding Walks with Generalized Bond Repulsion
on Z
- B. Tóth:
Multiple Covering of the Range of a Random Walk on Z
(On a Question of P. Erdös and P. Révész)
- B. Tóth:
Conjugate Diffusions on R_+ and Generalized
Ray-Knight processes
- B. Tóth:
Generalized Ray-Knight Theory and Limit Theorems
for Self-Interacting Random Walks on Z
- B. Tóth, Wendelin Werner:
Tied Favourite Edges for Simple Random Walk
- B. Tóth:
Limit Theorems for Weakly Reinforced Random Walks on Z